Knockout of the Na,K-ATPase α2-isoform in cardiac myocytes delays pressure overload-induced cardiac dysfunction.
نویسندگان
چکیده
The α2-isoform of the Na,K-ATPase (α2) is the minor isoform of the Na,K-ATPase expressed in the cardiovascular system and is thought to play a critical role in the regulation of cardiovascular hemodynamics. However, the organ system/cell type expressing α2 that is required for this regulation has not been fully defined. The present study uses a heart-specific knockout of α2 to further define the tissue-specific role of α2 in the regulation of cardiovascular hemodynamics. To accomplish this, we developed a mouse model using the Cre/loxP system to generate a tissue-specific knockout of α2 in the heart using β-myosin heavy chain Cre. We have achieved a 90% knockout of α2 expression in the heart of the knockout mice. Interestingly, the heart-specific knockout mice exhibit normal basal cardiac function and systolic blood pressure, and in addition, these mice develop ACTH-induced hypertension in response to ACTH treatment similar to control mice. Surprisingly, the heart-specific knockout mice display delayed onset of cardiac dysfunction compared with control mice in response to pressure overload induced by transverse aortic constriction; however, the heart-specific knockout mice deteriorated to control levels by 9 wk post-transverse aortic constriction. These results suggest that heart expression of α2 does not play a role in the regulation of basal cardiovascular function or blood pressure; however, heart expression of α2 plays a role in the hypertrophic response to pressure overload. This study further emphasizes that the tissue localization of α2 determines its unique roles in the regulation of cardiovascular function.
منابع مشابه
Regulation of Cardiac Remodeling by Cardiac Na+/K+-ATPase Isoforms
Cardiac remodeling occurs after cardiac pressure/volume overload or myocardial injury during the development of heart failure and is a determinant of heart failure. Preventing or reversing remodeling is a goal of heart failure therapy. Human cardiomyocyte Na(+)/K(+)-ATPase has multiple α isoforms (1-3). The expression of the α subunit of the Na(+)/K(+)-ATPase is often altered in hypertrophic an...
متن کاملMice expressing ouabain-sensitive α1-Na,K-ATPase have increased susceptibility to pressure overload-induced cardiac hypertrophy.
The Na,K-ATPase is a ubiquitous transmembrane pump and a specific receptor for cardiac glycosides such as ouabain and digoxin, which are used in the management of congestive heart failure (CHF). A potential role for these so-called endogenous cardiotonic steroids (CS) has been explored, and it has become apparent that such compounds are elevated and may play an important role in a variety of ph...
متن کاملCardiac glycosides and isoforms of Na/K-ATPase 1 Selectivity of digitalis glycosides for isoforms of human Na,K-ATPase
There are four isoforms of the α subunit (α1-4) and three isoforms of the β subunit (β1-3) of Na,K-ATPase, with distinct tissue-specific distribution and physiological functions. α2 is thought to play a key role in cardiac and smooth muscle contraction and be an important target of cardiac glycosides. An α2selective cardiac glycoside could provide important insights into physiological and pharm...
متن کاملOverexpression of the Na+/K+ ATPase α2 but not α1 isoform attenuates pathological cardiac hypertrophy and remodeling.
RATIONALE The Na+ / K+ ATPase (NKA) directly regulates intracellular Na+ levels, which in turn indirectly regulates Ca2+ levels by proximally controlling flux through the Na+ / Ca2+ exchanger (NCX1). Elevated Na+ levels have been reported during heart failure, which permits some degree of reverse-mode Ca2+ entry through NCX1, as well as less efficient Ca2+ clearance. OBJECTIVE To determine wh...
متن کاملEnhanced Pressor Response to Increased CSF Sodium Concentration and to Central Angiotensin I in Heterozygous α2 Na, K-ATPase Knockout Mice*
Intracerebroventricular (i.c.v.) infusion of NaCl mimics the effects of a high-salt diet in salt-sensitive hypertension, raising the sodium concentration in the cerebrospinal fluid (CSF [Na]) and subsequently increasing the concentration of an endogenous ouabain-like substance (OLS) in the brain. The OLS in turn inhibits the brain Na, K-ATPase, causing an increase in the activity of the brain r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 304 8 شماره
صفحات -
تاریخ انتشار 2013